Материалы для проведения муниципального этапа XLIV ВСЕРОССИЙСКОЙ МАТЕМАТИЧЕСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ В МОСКОВСКОЙ ОБЛАСТИ

2017-2018 учебный год

2 декабря 2017 г.

Сборник содержит материалы для проведения II (муниципального) этапа XLIV Всероссийской олимпиады школьников по математике в Московской области. Задание подготовили члены региональной Методической комиссии по математике в Московской области к.ф.-м.н. Н. X. Агаханов и к.ф.-м.н. О. К. Подлипский (Московский физико-технический институт). Авторы задач — Н. X. Агаханов и О. К. Подлипский. Задачи $6.4,\,7.2$ предложены И. И. Богдановым, а задача $9.4-\Pi$. А. Кожевниковым.

Рецензенты: к.ф.-м.н. И.И. Богданов, к.ф.-м.н. Б.В. Трушин. Компьютерный макет подготовил И.И. Богданов.

Уважаемые коллеги!

В соответствии с регламентом проведения Всероссийской олимпиады школьников по математике, при проверке работ оценивается:

- правильное решение в 7 баллов;
- решение с недочетами в 5–6 баллов;
- решение с пропущенными важными случаями, либо с доказанным одним из двух (более сложным) утверждений задачи в 4 балла;
- доказательство вспомогательных утверждений, помогающих в решении задачи в 2–3 балла;
- рассмотрение отдельных важных случаев при отсутствии решения в 1 балл.

Во всех задачах, если это не оговорено специально, только верный ответ без обоснований стоит 0 баллов.

Работа выполняется в течение 4 часов, учащимися 6 классов — 3 часов.

Вопросы по организации проведения олимпиады, ее содержанию и оценке работ участников можно задать 2 декабря 2017 г. с 9.30 до 18.30 по телефону (495) 408-76-66.

Согласно действующему Порядку проведения Всероссийской олимпиады школьников, победителями муниципального этапа являются участники, набравшие наибольшее количество баллов. Важно отметить, что победителями и призерами олимпиады в каждой параллели (6–11 классов) могут стать несколько участников — возможно, набравших разное количество баллов.

Внимание! Приведенные решения не являются единственно правильными. Кроме того, оценка за задачу не должна зависеть от дли-

ны решения или его рациональности. В то же время, в 0 баллов оценивается «решение» задачи, при котором используется доказываемое утверждение (наиболее часто это встречается в геометрии: например, нужно доказать, что треугольник равносторонний, а решение начинается со слов «Пусть $\triangle ABC$ — равносторонний...»).

Решение задач на нахождение наибольшего (наименьшего) значения какой-либо величины включает в себя два шага:

- 1) доказательство того, что эта величина не больше (не меньше) некоторого числа («оценка»);
- 2) построение примера, показывающего достижимость этого значения («пример»).

В таких задачах, как правило, первый шаг решения оценивается в 4–5 баллов, второй шаг — в 2–3 балла.

Следует учитывать, что школьники, впервые принимающие участие в олимпиаде, особенно учащиеся 6 и 7 классов, не умеют четко записывать объяснения в своих решениях. Поэтому в 6–7 классах нужно оценивать степень понимания решения, а не качество его записи.

В приведенных после решений задач комментариях указаны баллы за типичные продвижения в решении и ошибки.

Желаем успешной работы!

В 2017—2018 учебном году III (региональный) этап Всероссийской олимпиады школьников по математике в Московской области (Московская областная математическая олимпиада) будет проведен 31 января (1 тур) и 1 февраля (2 тур) 2017 г. для учащихся 9—11 классов. Одновременно для учащихся 8 класса будет проведен региональный этап олимпиады Эйлера. Согласно Порядку проведения Всероссийской олимпиады школьников, участниками регионального этапа являются:

- победители и призеры регионального этапа олимпиады предыдущего года;
- участники муниципального этапа олимпиады текущего года, набравшие необходимое для участия в региональном этапе количество баллов.

В соответствии с приказом Министерства образования Московской области оба тура региональной олимпиады пройдут на базе МФТИ в г. Долгопрудном и г. Жуковском. Муниципальное образование при сдаче заявки на участие выбирает место проведения (из двух) самостоятельно.

Условия и решения задач

6 класс

6.1. Вычеркните из числа 987654321 как можно больше цифр так, чтобы оставшееся число делилось на 15.

Ответ. Нужно вычеркнуть все цифры, кроме 7 и 5.

Решение. Данное число должно быть минимум двузначным и оканчиваться на 5. Числа 95, 85, 65 на 15 не делятся. Значит, приведенный пример — единственный.

Комментарий. Баллы не снимаются, если только приведен правильный ответ (в том числе в форме «75»).

Приведен способ вычеркивания менее 7 цифр — 0 баллов.

6.2. Сложите из пятиклеточных фигурок, среди которых нет двух одинаковых, какой-нибудь клетчатый квадрат.

Решение. Один из возможных примеров показан на рис. 1.

Комментарий. Среди фигурок есть одинаковые — 0 баллов.

Любой правильный пример разрезания— 7 баллов.

Рис. 1

6.3. В комнате 10 человек — лжецы и рыцари. Лжецы всегда лгут, а рыцари всегда говорят правлу. Три человека сказали: «В комнате нечетное

ду. Три человека сказали: «В комнате нечетное число лжецов»; а остальные семь сказали: «В комнате четное число рыцарей». Сколько рыцарей могло быть в комнате?

Ответ. 3 рыцаря.

Решение. Если в комнате нечетное число лжецов, то рыцарей также будет нечетное число, так как всего в комнате 10 человек. Поэтому одна из двух произнесенных фраз — ложь, а другая — правда. Но и 3, и 7 — нечетные числа, поэтому правдой является фраза «В комнате нечетное число лжецов». Значит, в комнате 3 рыцаря.

Комментарий. Доказано, что одна из двух произнесенных фраз — ложь, а другая правда — 3 балла.

Только ответ — 0 баллов.

Только ответ с правильным пояснением, какие люди что говорили — 1 балл.

6.4. Можно ли в равенстве 0,**+0,**+0,**+0,**=1 заменить звездочки различными цифрами от 0 до 7 так, чтобы получилось верное равенство?

Ответ. Можно.

Решение. Например, 0.03 + 0.14 + 0.26 + 0.57 = 1.

Комментарий. Любой правильный пример — 7 баллов.

Только ответ «можно» без примера — 0 баллов.

В примере используются одинаковые цифры вместо некоторых звездочек — 0 баллов.

6.5. В ящике лежат шары трех цветов: красного, синего и зеленого, причем шаров каждого цвета хотя бы по одному. Известно, что среди любых 10 шаров найдется красный шар, а среди любых 20 шаров — синий. Какое наибольшее количество шаров могло лежать в ящике?

Ответ. 27 шаров.

Решение. Заметим, что суммарное количество синих и зеленых шаров не больше 9—в противном случае нашлись бы 10 шаров, среди которых нет красного. Аналогично, суммарное количество красных и зеленых шаров не больше 19.

Так как по условию зеленый шар хотя бы один, а суммарное количество синих и зеленых шаров не больше 9, то синих шаров не больше 8. Теперь из того, что синих шаров не больше 8, а красных и зеленых шаров не больше 19, следует, что суммарное количество шаров не превосходит 8+19=27.

Если же в коробке 1 зеленый, 8 синих и 18 красных шаров, то условие задачи выполняется.

Комментарий. Приведен пример распределения цветов для 27 шаров — 2 балла (эти баллы могут суммироваться с упомянутыми ниже).

Доказано только, что суммарное количество красных и зеленых шаров не больше 19 и/или суммарное количество синих и зеленых шаров не больше 9-2 балла.

Доказано, что в ящике не более 27 mapoв — 5 баллов.

7.1. Вырежьте из клетчатого квадрата 5×5 одну нецентральную клетку так, чтобы оставшуюся часть можно было разрезать на 6 равных клетчатых фигурок, не являющихся прямоугольниками. Приведите пример такого разрезания.

Решение. Один из возможных примеров показан на рис. 2.

Комментарий. Вырезана центральная клетка — 0 баллов.

Любой правильный пример разрезания—7 баллов.

Рис. 2

7.2. Можно ли в равенстве 0,**+0,**+0,**+0,**=2 заменить звездочки различными цифрами от 1 до 9 так, чтобы получилось верное равенство?

Ответ. Можно.

Решение. Например, 0, 13 + 0, 24 + 0, 65 + 0, 98 = 2.

Комментарий. Любой правильный пример — 7 баллов.

Только ответ «можно» без примера — 0 баллов.

В примере используются одинаковые цифры вместо некоторых звездочек — 0 баллов.

7.3. В классе 26 школьников. Для школьной игры первому ученику дали 2 фишки. Второму— на 3 фишки больше. А каждому следующему давали либо на 3 фишки больше, либо на 3 меньше, чем предыдущему. Затем ученики как-то разбились на три команды. Могло ли оказаться, что суммарное число фишек в каждой команде оказалось одинаковым?

Ответ. Не могло.

Решение. Предположим противное. Тогда суммарное количество фишек у школьников равнялось бы утроенному количеству фишек у одной команды, то есть делилось бы на 3.

Но это количество на 3 не делится. Докажем это. Можно считать, что каждому школьнику сначала дали по 2 зеленые фишки, а потом некоторым из них добавляли красные фишки. Из условия следует, что количество красных фишек у каждого школьника делится на 3. А это значит, что суммарное количе-

ство красных фишек также делится на 3. Если бы общее количество фишек делилось на 3, то и количество зеленых фишек также делилось бы на 3, но оно равно $2 \cdot 26 = 52$.

Замечание. Фактически мы показали, что у каждого школьника количество фишек имеет остаток 2 при делении на 3. Тогда суммарное количество фишек будет иметь остаток 1 при делении на 3.

Комментарий. Верный ответ без обоснования — 0 баллов. Замечено, что количество фишек у каждого школьника дает остаток 2 при делении на 3-2 балла.

7.4. Турнир лучников проводился по следующим правилам. С каждого участника собрали одинаковый взнос. Организаторы турнира забрали 1/3 от всех поступивших денег, а оставшиеся деньги пошли в призовой фонд турнира. Робин Гуд, победивший в турнире, получил больше каждого из остальных участников—1/6 от призового фонда, однако оказался в убытке. Какое количество лучников могло участвовать в турнире? Приведите все возможные варианты и докажите, что других нет.

Ответ. 7 или 8.

Решение. Призовой фонд составляет $\frac{2}{3}$ от всех поступивших денег. Поэтому победитель турнира получил $\frac{1}{6} \cdot \frac{2}{3} = \frac{1}{9}$ от поступивших денег. Значит, если число участников не больше восьми, то взнос превышает награду за первое место, а иначе— не превышает. Итак, количество участников не больше восьми.

Так как победитель получил $\frac{1}{6}$ от призового фонда, то остальные участники разделили $\frac{5}{6}$ фонда. При том победитель получил больше каждого из остальных. Поэтому каждый из оставшихся получил меньше $\frac{1}{6}$ фонда, а значит, остальных больше, чем $\frac{5}{6}:\frac{1}{6}=5$ человек.

Таким образом, в турнире могли участвовать 7 или 8 человек. Обе этих ситуации возможны. Для этого, например, не выигравшие участники могли поровну разделить остающиеся $\frac{5}{6}$

призового фонда (получив по $\frac{5}{6} \cdot \frac{1}{6} < \frac{1}{6}$ или по $\frac{5}{6} \cdot \frac{1}{7} < \frac{1}{6}$ призового фонда).

Комментарий. Доказано, что общее число участников не больше 8-3 балла.

Доказано, что общее число участников не меньше 7-3 балла.

Приведены примеры турниров с 7 и с 8 участниками — 1 балл.

Баллы за все упомянутые частичные продвижения суммируются.

7.5. В ящике лежат шары трех цветов: красного, синего и зеленого, причем шаров каждого цвета хотя бы по 2. Известно, что среди любых 10 шаров найдется красный шар, а среди любых 20 шаров — синий. Какое наибольшее количество шаров могло лежать в яшике?

Ответ. 26 шаров.

Решение. Заметим, что суммарное количество синих и зеленых шаров не больше 9—в противном случае нашлись бы 10 шаров, среди которых нет красного. Аналогично, суммарное количество красных и зеленых шаров не больше 19.

Так как по условию зеленых шаров хотя бы 2, а суммарное количество синих и зеленых шаров не больше 9, то синих шаров не больше 7. Теперь из того, что синих шаров не больше 7, а красных и зеленых шаров не больше 19, следует, что суммарное количество шаров не превосходит 7+19=26.

Если же в коробке 2 зеленых, 7 синих и 17 красных шаров, то условие задачи выполняется.

Комментарий. Доказано только, что суммарное количество красных и зеленых шаров не больше 19 и/или суммарное количество синих и зеленых шаров не больше 9-2 балла.

Доказано, что в ящике не более 26 шаров — 5 баллов.

Приведен пример распределения цветов для 26 шаров— 2 балла.

8.1. В школе «Эксперимент» учащимся выставляют оценки от 1 до 5. Борис получил по контрольной двойку. Учитель заметил, что, если ему изменить эту двойку на пятерку, то средний балл по контрольной среди Борисов в классе увеличится ровно в два раза. Сколько Борисов писало контрольную?

Ответ. Два Бориса.

Решение. Пусть контрольную писало m Борисов, и другие Борисы набрали вместе x баллов. Тогда условие на средний балл выглядит так: $2\cdot\frac{x+2}{m}=\frac{x+5}{m}$. Отсюда 2(x+2)=x+5, то есть x=1. Это возможно только если контрольную писал еще один Борис, который получил по контрольной единицу. Таким образом, контрольную писало два Бориса.

Комментарий. Верный ответ без объяснения — 0 баллов.

Приведен только верный пример оценок двух Борисов— 2 балла.

8.2. Можно ли заменить в пяти равенствах вида *+*+*=*+*, все звездочки на натуральные числа от 1 до 25 так, чтобы все равенства получились верными, а каждое из чисел использовалось ровно 1 раз?

Ответ. Нельзя.

Решение. Пусть такая замена звездочек на числа возможна. Тогда сумма всех пяти чисел, входящих в первое равенство, четна (она равна удвоенной сумме чисел в одной части). Также четными будут суммы пятерок чисел, входящих в остальные четыре равенства. Но тогда четна и сумма всех чисел. А она—нечетная, так как в этой сумме нечетное количество (а именно 13) нечетных слагаемых.

Комментарий. Верный ответ без обоснования — 0 баллов. Замечено, что сумма пяти чисел, входящих в одно равенство, четна — 2 балла.

8.3. Докажите, что существует лишь конечное количество пар натуральных чисел (a,b), для которых справедливо равенство $a(a+b)=(2^{2017}+3^{2017})b$.

Решение. Обозначим $N=2^{2017}+3^{2017}$. Перепишем уравне-

ние в виде $a^2=(N-a)b$. Так как a^2 и b положительны, то положительна и разность N-a. Значит, a< N. Поэтому существует лишь конечное количество таких чисел a (так как a — натуральное). Для каждого такого a однозначно находится $b=\frac{a^2}{N-a}$ (причем не все эти b будут натуральными).

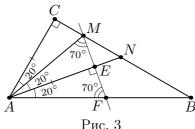
Замечание. Также сразу можно было заметить, что обе части уравнения положительны и a+b>b, поэтому a< N.

Комментарий. Доказано, что a < N (или количество возможных значений a конечно) — 5 баллов.

8.4. На катете BC прямоугольного треугольника ABC ($\angle BCA = 90^\circ$) выбраны точки M и N так, что $\angle CAM = \angle MAN = \angle NAB$. Прямая, проходящая через точку M, пересекает отрезки AN и AB в точках E и F соответственно. Найдите AB, если AE = a, $\angle ANB = 130^\circ$ и $\angle BFM = 110^\circ$.

Ответ. 2а.

Решение. Из условия следует, что $\angle ANC = 50^\circ$. Тогда в прямоугольном треугольнике ANC имеем $\angle CAN = 40^\circ$. Отсюда $\angle CAM = \angle MAN = \angle NAB = 20^\circ$. Так как $\angle BFM = 110^\circ$, то $\angle AFM = 70^\circ$. Но тогда в треугольнике MAF получаем $\angle AMF = 70^\circ$. Значит, треугольник MAF — равнобедренный, и его биссектриса AE является высотой (см. рис. 3). Но тогда прямоугольные треугольники AME и AMC равны (AM — общая, $\angle CAM = \angle MAE$). Поэтому AC = a. Наконец, поскольку в прямоугольном треугольнике ABC угол $\angle CAB$ равен 60° , гипотенуза равна AB = 2AC = 2a.



Комментарий. Найден угол CAB-2 балла. Доказано, что треугольник MAF равнобедренный — 1 балл.

Доказано, что треугольники AME и AMC равны — 2 балла. Баллы за все упомянутые частичные продвижения суммируются.

8.5. В клетках доски 8×8 стоят лжецы и рыцари (в каждой клетке — по одному человеку). Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый сказал: «В одной из соседних со мной клеток стоит лжец». Клетки считаются соседними, если у них есть хотя бы одна общая вершина. Какое наименьшее число лжецов могло стоять на доске?

Ответ. 9.

Решение. Из условия следует, что в одной из соседних клеток с любым рыцарем должен стоять лжец, а все соседи лжеца должны быть рыцарями.

Рассмотрим 9 клеток, отмеченных на рис. 4. Заметим, что либо в отмеченной клетке стоит лжец, либо (если в ней стоит рыцарь) хотя бы в одной соседней к ней стоит лжец. При этом ни у какой пары отмеченных клеток нет общих соседей. Поэтому лжецов должно быть не меньше 9.

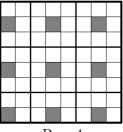


Рис. 4

Если же лжецы будут стоять в отмеченных клетках, а в остальных будут стоять рыцари, то условие задачи будет выполнено.

Комментарий. Указано, что в одной из соседних клеток с любым рыцарем должен стоять лжец, а все соседи лжеца должны быть рыцарями — 1 балл.

Приведен пример расстановки 9 лжецов — 1 балл.

Доказано, что лжецов не меньше 9-5 баллов.

Баллы за все упомянутые частичные продвижения суммируются.

9.1. Можно ли в равенстве $1 \cdot 2 \cdot 3 \cdot \ldots \cdot 8 \cdot 9 \cdot 10 = 11 \cdot 12 \cdot 13 \cdot \ldots \cdot 20$ вычеркнуть из левой части один сомножитель, а из правой — несколько так, чтобы получилось верное равенство?

Ответ. Можно.

Решение. Если слева вычеркнуть 4, а справа 11, 13, 17, 19 и 16, то оба оставшихся выражения будут равны $2^6 3^4 5^2 7^1$.

Замечание. Приведенный пример — не единственный; например, можно слева вычеркнуть 3 вместо 4, а справа — 12 вместо 16.

Комментарий. Верно указано, какие числа вычеркивать, но не проверено, что получилось верное равенство — 6 баллов.

- 9.2. На доске написано натуральное число b. Про него сказали три утверждения:
 - 1) это число четное;
 - 2) это число меньше 102;
 - 3) уравнение $x^2 + 20x + b = 0$ имеет хотя бы один корень.

Какое наибольшее число может быть написано на доске, если из этих трех утверждений ровно два—верные?

Ответ. 99.

Решение. Рассмотрим условие 3). Для того, чтобы квадратное уравнение имело хотя бы один корень, нужно, чтобы дискриминант был неотрицательным. То есть $D=20^2-4b\geqslant 0$, откуда $b\leqslant 100$.

Если число, написанное на доске, не меньше 102, то утверждения 2) и 3) не верны. Поэтому написанное число не больше 101.

Если написанное число равно 101, то неверны утверждения 1) и 3), то есть число 101 не подходит.

Если написанное число равно 100, то верны все три утверждения. Значит, число 100 не подходит.

Если написанное число равно 99, то верны ровно два утверждения -2) и 3). Значит, наибольшее возможное число -99.

Комментарий. Верный ответ без обоснования — 1 балл.

Показано, что третье утверждение эквивалентно $b \leqslant 100-2$ балла.

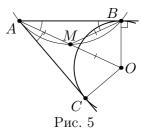
Доказано, что написанное число не больше 101-3 балла. Баллы за все упомянутые частичные продвижения сумми-

Баллы за все упомянутые частичные продвижения суммируются.

Из точки A проведи касательные AB и AC к окружности AB

9.3. Из точки A провели касательные AB и AC к окружности с центром O (здесь B и C — точки касания). Точка M — середина отрезка AO. Докажите, что окружность, описанная около треугольника ABM, касается прямой AC.

Решение. Условие касания равносильно тому, что $\angle MAC = \angle ABM$. Но треугольник ABO—прямоугольный (OB—радиус, проведенный к касательной BA), а отрезок BM—его медиана, проведенная к гипотенузе. Поэтому BM = MA (см. рис. 5). Значит, $\angle ABM = \angle MAB = \angle MAC$ (мы



использовали то, что AO- биссектриса угла BAC).

Комментарий. Доказано, что BM = MA - 3 балла.

9.4. Даны различные положительные числа $a,\,b,\,c,\,d$ такие, что a+b>c+d. Докажите, что $\frac{a}{c}+\frac{b}{d}+\frac{a}{d}+\frac{b}{c}>4$.

Решение. Заметим, что

$$\frac{a}{c} + \frac{b}{d} + \frac{a}{d} + \frac{b}{c} = \frac{a+b}{c} + \frac{a+b}{d} > \frac{c+d}{c} + \frac{c+d}{d} = \frac{(c+d)^2}{cd} \geqslant 4.$$

Последнее неравенство справедливо, так как оно равносильно неравенству $(c+d)^2\geqslant 4cd$, то есть $(c-d)^2\geqslant 0$.

Комментарий. Решение сведено к доказательству неравенства $\frac{d}{c} + \frac{c}{d} \geqslant 2 - 4$ балла.

Неравенство между средним арифметическим и средним геометрическим можно использовать без доказательства.

9.5.~B клетках доски 7×7 стоят лжецы и рыцари (в каждой клетке— по одному человеку). Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый сказал: «В соседних со мной клетках нет рыцарей». Клетки считаются соседними, если у них есть хо-

тя бы одна общая вершина. Какое наименьшее число рыцарей могло стоять на доске?

Ответ. 9.

Решение. Из условия следует, что в одной из соседних клеток с любым лжецом должен стоять рыцарь, а все соседи рыцаря должны быть лжецами.

Рассмотрим 9 клеток, отмеченных на рис. 6. Заметим, что либо в отмеченной клетке стоит рыцарь, либо (если в ней стоит лжец) хотя бы в одной соседней к ней стоит рыцарь. При этом ни у какой пары отмеченных клеток нет общих соседей. Поэтому рыцарей должно быть не меньше 9.

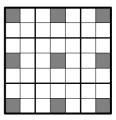


Рис. 6

Если же рыцари будут стоять в отмеченных клетках, а в остальных будут стоять лжецы, то условие задачи будет выполнено.

Комментарий. Указано, что в одной из соседних клеток с любым лжецом должен стоять рыцарь, а все соседи рыцаря должны быть лжецами — 1 балл.

Приведен пример расстановки 9 рыцарей — 1 балл.

Доказано, что рыцарей не меньше 9-5 баллов.

Баллы за все упомянутые частичные продвижения суммируются.

10.1. Числа 1, 2, 3, . . . , 100 разбили на 50 пар, и числа в каждой паре сложили. Какое наибольшее количество из этих пятидесяти сумм может делиться на 20?

Ответ. 49.

Решение. Заметим, что все 50 сумм не могут делиться на 20, так как в этом случае и сумма всех чисел делилась бы на 20. Но сумма всех чисел равна 5050.

Если разбить числа на пары следующим образом: 1 и 99, 2 и 98, ..., 49 и 51, 50 и 100, то суммы чисел в первых 49 парах будут равны 100, а значит, будут делиться на 20.

Замечание. То, что суммы чисел во всех парах не могут делиться на 20, можно доказать по-другому. Для этого достаточно рассмотреть числа 20, 40, 60, 80 и 100 и заметить, что если в какую-то пару входит ровно одно число из этих пяти, то сумма чисел пары не может делиться на 20. Но этих чисел нечетное количество, поэтому найдется пара ровно с одним из этих чисел.

Комментарий. Доказано только, что суммы во всех парах не могут делиться на 20-4 балла.

Доказано только, что суммы чисел в 49 парах могут делиться на 20-2 балла.

10.2. Ненулевые числа a,b,c образуют в указанном порядке арифметическую прогрессию. Докажите, что уравнение $ax^2+2\sqrt{2}bx+c=0$ имеет два решения.

Решение. Из характеристического свойства арифметической прогрессии получаем $b=\frac{a+c}{2}$. Тогда дискриминант интересующего нас квадратного уравнения равен $D=8b^2-4ac=2(a+c)^2-4ac=2a^2+2c^2>0$. Поэтому квадратное уравнение имеет два решения.

Комментарий. Доказано лишь, что $D\geqslant 0$ (вместо требуемого D>0)-5 баллов.

10.3. Можно ли какое-нибудь число вида $10000\dots00001$ представить в виде x!+y!+z!, где $x,\,y,\,z$ — натуральные числа? (Как обычно, через n! обозначается произведение $1\cdot 2\cdot 3\cdot \ldots \cdot n.$)

Ответ. Нельзя.

Решение. Каждое число n! при $n \geqslant 2$ является четным. Поэтому среди чисел x, y, z ровно одно равно 1 (все три не могут равняться 1, иначе сумма их факториалов будет равна 3). Пусть, например, z=1. Тогда $x!+y!=100\ldots00$. Если оба числа x и y не меньше трех, то каждое слагаемое в сумме x!+y! делится на 3, то есть и их сумма делится на 3, что не так. Значит, хотя бы одно из этих двух чисел меньше 3. Пусть, например, y=2, тогда y!=2, поэтому $x!=99\ldots998$. Последнее невозможно: выше мы отметили, что это число должно делиться на 3.

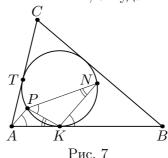
Комментарий. Доказано, что ровно одно из чисел должно равняться 1-2 балла.

Доказано, что еще одно число меньше 3-2 балла.

10.4. Окружность, вписанная в треугольник ABC, касается стороны AB в точке K, а стороны AC-в точке T. На меньшей дуге TK выбрана точка P. Прямая, проходящая через точку K параллельно прямой AP, вторично пересекает окружность в точке N. Найдите PK, если известно, что AP=a и KN=b.

Otbet. \sqrt{ab} .

Решение. Заметим, что $\angle NKB = \angle NPK$ — это угол между касательной и хордой. А из данной в условии параллельности следует, что $\angle NKB = \angle PAK$ (см. рис. 7). Кроме того, $\angle KNP = \angle PKA$. Значит, треугольники KNP и PKA подобны. Тогда KN: KP = KP: AP, откуда $KP^2 = KN \cdot AP = ab$.



Комментарий. Доказано только, что в треугольниках KNP и PKA есть одна пара равных углов — 2 балла.

10.5. Вася придумал новый корабль для морского боя — *«боевой буб-*

 $nu\kappa$ ». Этот корабль состоит из всех клеток квадрата 3×3 , кроме его центральной клетки. На поле 8×8 разместили один боевой бублик. Какое минимальное число выстрелов нужно сделать, чтобы гарантированно его ранить?

Ответ. 8 выстрелов.

Решение. Заметим, что если бублик размещен на поле 4×4 , то одного выстрела не хватит, чтобы гарантированно его ранить. Действительно, если выстрел произведен в клетку, соседнюю со стороной квадрата, то бублик может быть размещен рядом с противоположной стороной. Если же выстрел произве-

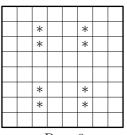


Рис. 8

ден в одну из четырех центральных клеток квадрата, то бублик может быть размещен так, что его центр совпадает с клеткой, в которую сделан выстрел. Значит, потребуется сделать не менее двух выстрелов, чтобы гарантированно его ранить.

Разбив поле 8×8 на четыре квадрата 4×4 , получим, что для того, чтобы гарантированно ранить бублик, потребуется не менее 8 выстрелов.

Если же сделать 8 выстрелов так, как показано на рис. 8, то мы гарантированно раним бублик.

Комментарий. Только верный ответ — 0 баллов.

Приведен пример, показывающий, что за 8 выстрелов можно гарантированно ранить бублик (для этого достаточно верно указать 8 клеток, в которые нужно стрелять) — 2 балла.

Приведено доказательство того, что менее, чем за 8 выстрелов, гарантированно ранить бублик нельзя (а пример отсутствует или неверен) — 5 баллов.

11.1. Найдите все значения параметра a, для которых найдётся такое число β , что числа $\sin \beta$ и $2\cos \beta$ являются различными корнями уравнения $x^2 + ax + 1 = 0$.

Ответ.
$$a = \pm \frac{3}{\sqrt{2}}$$
.

Решение. По теореме Виета, $\sin \beta \cdot 2 \cos \beta = 1$, откуда $\sin 2\beta = 1$ и $\beta = \frac{\pi}{4} + \pi n$ (n-целое). Отсюда $a = -(\sin \beta + 2\cos \beta) = \pm \frac{3}{\sqrt{2}}$. Оба этих значения реализуются (для трехчлена $x^2 + \frac{3}{\sqrt{2}}x + 1$ можно положить $\beta = \frac{5\pi}{4}$, а для трехчлена $x^2 - \frac{3}{\sqrt{2}}x + 1$ —соответственно $\beta = \frac{\pi}{4}$).

Комментарий. Получено уравнение $\sin \beta \cdot 2\cos \beta = 1 - 2$ балла.

Уравнение преобразовано к виду $\sin 2\beta = 1 - 1$ балл.

За каждый из двух обоснованно найденных ответов — 2 балла.

Если найдены верные значения a, но не проверено, что трехчлены имеют корни требуемого вида, — баллы не снимаются.

11.2. По итогам волейбольного турнира, проведенного в один круг (т. е. каждая команда сыграла с каждой одну игру), оказалось, что первые три команды выиграли у каждой из остальных команд, а сумма очков, набранных первыми тремя командами, на 3 больше, чем сумма очков, набранных остальными командами. Сколько всего команд участвовало в турнире, если известно, что их больше трех? (За победу в игре дается 1 очко, за поражение — 0; ничьих в волейболе не бывает.)

Ответ. 10.

Решение. Пусть количество команд равно n+3. Тогда первые три команды в играх с остальными набрали 3n очков, а в играх между собой они набрали 3 очка. Остальные n команд в играх между собой набрали $\frac{n(n-1)}{2}$ очков. По условию, $3n+3=\frac{n(n-1)}{2}+3$, то есть $n^2-7n=0$. Отсюда получаем, что n=7.

Комментарий. Получена формула, выражающая количество очков, набранных первыми тремя командами, через количество команд-3 балла.

11.3. Положительные числа x и y, меньшие 1/2, удовлетворяют неравенству $y^2-x^2>y-x$. Докажите, что они удовлетворяют и неравенству $y^3-x^3>y-x$.

Решение. Перенесем все выражения в левую часть и разложим на множители: (y-x)(y+x-1)>0. Отсюда, с учетом неравенства y+x<1, получаем y-x<0. Тогда доказываемое неравенство принимает вид $(y-x)(y^2+xy+x^2-1)>0$. Это неравенство верно, так как первые три слагаемых во второй скобке меньше 1/4, то есть обе скобки принимают отрицательные значения.

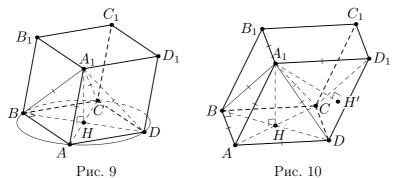
Комментарий. Доказано, что y - x < 0 - 2 балла.

11.4. В параллелепипеде отмечена одна вершина. Какое наибольшее количество остальных вершин может находиться на одном и том же расстоянии от отмеченной?

Ответ. 6.

Решение. Покажем, что все 7 вершин параллелепипеда, отличных от отмеченной вершины, не могут находиться от нее на одинаковом расстоянии. Пусть это не так, и расстояния от всех остальных вершин параллелепипеда $ABCDA_1B_1C_1D_1$ до точки A_1 одинаковы. Опустим из точки A_1 перпендикуляр A_1H на плоскость ABC (см. рис. 9). Тогда треугольники A_1HA , A_1HB , A_1HC , A_1HD будут равны по гипотенузе и катету. Значит, точка H равноудалена от всех вершин грани ABCD, то есть параллелограмм ABCD вписан в окружность с центром H, и он — прямоугольник. Тогда прямоугольником является и грань $A_1B_1C_1D_1$. Но в прямоугольнике отрезки A_1B_1 и A_1D_1 короче отрезка A_1C_1 , так как гипотенуза в прямоугольном треугольнике больше катета. Значит, все 7 расстояний быть одинаковыми не могут.

Осталось привести пример параллелепипеда, в котором вершина A_1 равноудалена от 6 вершин. Возьмем параллелепипед, у которого грани ABCD и $A_1B_1C_1D_1$ —квадраты со стороной a, и описанная выше точка H является центром квадрата ABCD.



Пусть длина отрезка A_1H равна $\frac{a}{\sqrt{2}}$ (см. рис. 10). Тогда рассто-

яния от точки A_1 до вершин A,B,C,D равны $\sqrt{\frac{a^2}{2}+\frac{a^2}{2}}=a,$ то есть равны расстояниям от нее до вершин B и D.

Замечание 1. Тот же пример можно описать и подругому (см. рис. 10). Пусть грань CDD_1C_1 — ромб со стороной a, в котором $\angle C=120^\circ$. Разместим грань ABB_1A_1 так, чтобы основание H' перпендикуляра, опущенного из A_1 на плоскость CDD_1C_1 , являлось центром правильного треугольника CDD_1 , а высоту A_1H' подберем так, чтобы A_1 была равноудалена от точек A, B, B_1, C, D и D_1 .

Замечание 2. Приведенный пример — единственный (естественно, с точностью до переобозначения вершин). Поясним это.

Пусть вершина A_1 равноудалена от шести других вершин параллелепипеда. Назовем оставшуюся вершину *особой*. Можно считать, что особая вершина — это либо B_1 , либо C_1 , либо C.

Если особая вершина — B_1 , то из рассуждений из решения следует, что $A_1B_1C_1D_1$ — прямоугольник; но нам требуется равенство $A_1C_1=A_1D_1$, а в прямоугольнике диагональ всегда больше стороны.

Если особая вершина — C_1 , то $A_1A = A_1B = A_1B_1$; из этого нетрудно получить, что AA_1B_1B — ромб, в котором $\angle A_1 = 120^\circ$. Так как A_1 также равноудалена от C, D и D_1 , отсюда получается описание примера, приведенное в замечании выше.

Наконец, если особая вершина — C, то все три параллело-

грамма AA_1B_1B , AA_1D_1D и $A_1B_1C_1D_1$ должны быть ромбами с углами 120° при вершине A_1 ; но это невозможно, ибо сумма плоских углов трехгранного угла меньше 360° .

Комментарий. Доказано только, что 7 вершин не могут быть равноудалены от восьмой — 3 балла.

Приведен только пример параллелепипеда, у которого одна из вершин равноудалена от 6 других — 3 балла.

11.5. Вася придумал новый корабль для морского боя — «боевой бублик». Этот корабль состоит из всех клеток квадрата 3×3 , кроме его центральной клетки. На поле 10×8 разместили один боевой бублик. Какое минимальное число выстрелов нужно сделать, чтобы гарантированно его ранить?

Ответ. 8 выстрелов.

Решение. Заметим, что если бублик размещен на поле 4×4 , то одного выстрела не хватит, чтобы гарантированно его ранить. Действительно, если выстрел произведен в клетку, соседнюю со стороной квадрата, то бублик может быть размещен рядом с противополож-

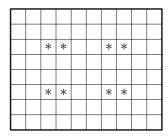


Рис. 11

ной стороной. Если же выстрел произведен в одну из четырех центральных клеток квадрата, то бублик может быть размещен так, что его центр совпадает с клеткой, в которую сделан выстрел. Значит, потребуется сделать не менее двух выстрелов, чтобы гарантированно его ранить.

Выделив на поле 10×8 четыре непересекающихся квадрата 4×4 , получим, что для того, чтобы гарантированно ранить бублик, потребуется не менее 8 выстрелов.

Если же сделать 8 выстрелов так, как показано на рис. 11, то мы гарантированно раним бублик.

Замечание. Вместо выделения четырех квадратов 4×4 можно также рассмотреть разбиение поля на четыре прямоугольника 5×4 .

Комментарий. Только верный ответ — 0 баллов.

Приведен пример, показывающий, что за 8 выстрелов мож-

но гарантированно ранить бублик (для этого достаточно верно указать 8 клеток, в которые нужно стрелять) — 2 балла.

Приведено доказательство того, что менее, чем за 8 выстрелов, гарантированно ранить бублик нельзя (а пример отсутствует или неверен) — 5 баллов.